Compressive sampling of correlated signals.

Overview

Compressive sampling of correlated signals

The recently developed theory of Compressive sensing (CS) has shown that sparse signals can be reconstructed from a much smaller number of measurements than their bandwidth suggests. In this paper we present a sampling scheme to acquire ensembles of correlated signals at a sub-Nyquist rate. The sampling architecture uses simple analog building blocks including analog vector matrix multiplier (AVMM) and linear time invariant (LTI) random filters to analog preprocess the signals before sampling them with non-uniform Analog-to-digital converters (ADCs). The sampling strategy takes advantage of the (a priori unknown) correlation structure in the ensemble to sample at a sub-Nyquist rate and stably recover the information using convex optimization. We close the discussion with some applications.

.

AI Applications

One AI application for businesses facing the choice between open-source and proprietary models to deploy generative AI is natural language processing (NLP) for customer service or support chatbots. Businesses can utilize generative AI models to develop chatbots that can understand and respond to customer queries in a more human-like manner. The choice between open-source and proprietary models can impact the accuracy, scalability, and customization capabilities of the NLP models deployed in these chatbots.

Additionally, another AI application is the development of recommendation systems. Generative AI models can be used to create personalized recommendations for products or content based on user behavior and preferences. The choice between open-source and proprietary models can affect the quality of the recommendations, as well as the ability to tailor the recommendation system to specific business needs.

Furthermore, businesses can leverage generative AI for content generation, such as automated text summarization, language translation, and creative writing. The choice between open-source and proprietary models can influence the linguistic fluency, coherence, and originality of the generated content.

In each of these applications, the decision between open-source and proprietary models for generative AI deployment can significantly impact the performance, interpretability, and ethical considerations of the AI systems utilized by businesses.